REPORT No. 597

AIR PROPELLERS IN YAW

By E. P. Lesley, George F. Worley, and Stanley Moy

SUMMARY

Tests of a 3-foot model propeller at four pitch settings and at 0°, 10°, 20°, and 30° yaw were made at Stanford University. In addition to the usual propeller coefficients, cross-wind and vertical forces and yawing, pitching, and rolling moments were determined about axes having their origin at the intersection of the blade axis and the axis of rotation.

The tests showed that the maximum efficiency was reduced only slightly for angles of yaw up to 10° but that at 30° yaw the loss in efficiency was about 10 percent. In all cases the cross-wind force was found to be greater than the cross-wind component of the axial thrust. With a yawed propeller an appreciable thrust was found for V/nD for zero thrust at zero yaw. Yawing a propeller was found to induce a pitching moment that increased in magnitude with yaw.

INTRODUCTION

Although airplanes are generally designed so that the propeller axis lies approximately in the direction of normal steady flight, the condition of yaw is found during such maneuvers as curved flight and in flight at high angle of attack. These maneuvers are usually of short duration and, while the effect of yaw from these causes may be, in specific cases, of interest, it is possibly of no great consequence. If, however, propellers are to be yawed in the steady-flight condition, the effects of yaw may be important. Such a condition would arise in the case that a wing engine is placed, for structural or other reasons, with its axis at an angle to the longitudinal axis of the plane.

Air propellers in yaw have been the subject of both theoretical and experimental investigation (references 1 to 5) but further information concerning the quantitative effect of small angles of yaw upon thrust, power, cross-wind force, and efficiency seemed desirable and therefore the present study was undertaken. While the study was made with the propeller axis in the horizontal plane and the angle between the propeller axis and the wind direction is thus called an angle of yaw, the results may be applied as well to angles of pitch since such body interference as was present would have been the same in either case.

APPARATUS AND TESTS

Wind tunnel.—The experimental work was done in the wind tunnel of the Daniel Guggenheim Aeronautical Laboratory of Stanford University. This tunnel is of the open-throat type with a throat diameter of 7½ feet. The maximum wind velocity is about 90 miles per hour.

FIGURE 1.—The dynamometer suspension.

Dynamometer.—The propeller dynamometer consists essentially of a six-component balance. A driving motor was rigidly suspended by a steel tube and pylon of steel rods from a platform located above the wind stream. The platform was completely restrained by six electrically operated beam balances.

The general arrangement and appearance of the dynamometer are shown in figures 1, 2, 3, and 4. In

figure 1, numbers 1 to 6 indicate the leads to the restraining beam balances, the balances themselves being similarly numbered in figure 4. As may be seen, the A-frame or platform was restrained in the wind direction by balances 1 and 2, in the vertical direction by balances 3, 4, and 5, and in the cross-wind direction by balance 6. In addition to these restraining or measuring balances, there were three auxiliary beam balances, designated by A in figures 1 and 4, that

FIGURE 2.—The propeller set-up shown in the yawed position.

carried the dead weight of the platform and suspended motor. The lines labeled C1, C2, and C6 (fig. 1) are leads to counterweights used to give the necessary initial loads on balances 1, 2, and 6.

The forward end-shield of the motor was elongated so that the propeller was well ahead of any considerable wind-stream obstruction. (See figs. 1, 2, and 3.) The distance from the propeller to the center of the supporting tube was two-thirds the propeller diameter. In figures 2 and 3 the motor is shown in the yawed condition. The angle of yaw could be adjusted as desired by a swivel joint provided in the supporting tube.

The motor, and such parts of the suspension as were in the wind stream, were shielded by a sheet-metal cover. Thus only the forces acting on the propeller were communicated to the platform and to the restraining balances. An electric bell gave warning of contact between the motor or its supports and the metal cover.

Propeller.—The propeller used in this investigation was a 3-foot metal right-hand adjustable propeller. It is designated propeller A in reference 6. It has a uniform geometric pitch and a pitch-diameter ratio of 0.7 when the blade angle at 0.75 radius is 16.6°. Four pitch settings were used: 16.6° (uniform pitch), 20.6°, 24.6°, and 28.6°; all pitch settings were measured at the 0.75R station.

TESTS

Measurements were made of six components of the air force acting on the propeller, three vertical, two in the wind direction, and one in the cross-wind direction. From these components and the arms of the restraining balances, the rolling, pitching, yawing, and torque moments about axes having their origin at the intersection of the propeller axis and blade axis, were com-

FIGURE 3.-Upstream view of the propeller test set-up.

puted. For each pitch setting of the propeller, tests were made at 0°, 10°, 20°, and 30° yaw.

As the model propeller driving motor was of the constant-speed type (about 1,800 r. p. m.), variations of the parameter V/nD were obtained by increasing the wind velocity in suitable increments. The propeller tip speed therefore remained nearly constant at about 280 feet per second. The Reynolds Number

FIGURE 4.-View of the electrical balancing units.

was about 0.1 full scale, assuming the full-scale propeller to be 10 feet in diameter operating at a tip speed of 800 feet per second.

The observed thrust and power are reduced to the usual coefficients

$$C_T = \frac{T}{\rho n^2 \bar{D}^4}$$

$$C_P = \frac{P}{\sigma n^3 D^5}$$

$$\eta = \frac{T \times V}{P} = \frac{C_T}{C_P} \times \frac{V}{nD}$$

$$C_{\bullet} = \sqrt[5]{\frac{\rho \overline{V^{5}}}{P n^{2}}} = \frac{V \overline{b}}{nD} \sqrt[5]{\frac{1}{C_{P}}}$$

where

- T, thrust of the propeller measured parallel to the axis of the tunnel.
- P, motor power.
- ρ , mass density of the air.
- n, revolutions per unit time.
- D, propeller diameter.
- V, velocity.

The vertical and cross-wind forces are reduced to coefficients similar to the thrust coefficient,

$$C_{F_z} = \frac{F_z}{\rho n^2 D^4}$$

$$C_{F_y} = \frac{F_y}{\rho n^2 D^2}$$

where

 F_z , vertical force.

 F_{ν} , cross-wind force.

The moments about the three axes are reduced to coefficients similar in form to the propeller torque coefficient,

$$C_{Q} = \frac{Q}{\rho n^{2} D^{5}}$$

$$C_{i} = \frac{L}{\rho n^{2}D^{2}}$$

$$C_{Q} = \frac{Q}{\rho n^{2}D^{5}}$$

$$C_{l} = \frac{L}{\rho n^{2}D^{5}}$$

$$C_{m} = \frac{M}{\rho n^{2}D^{5}}$$

$$C_n = \frac{N}{\rho n^2 D^5}$$

where

Q, propeller torque.

L, rolling moment.

M, pitching moment

N, yawing moment.

RESULTS AND DISCUSSION

In table I are given the computed values of propeller, force, and moment coefficients for different values of V/nD.

In figure 5 the results of a test with the yaw dynamometer are compared with two earlier tests of the same propeller made in the same wind-tunnel using the Stanford University propeller dynamometer. The tests by Lesley and Reid are reported in reference 6; the tests by Babberger were made in connection with a study of the scale effect on air propellers submitted as a thesis at Stanford University in 1934. The agreement with Babberger's test at 2,000 r. p. m. is excellent, but the thrust and power coefficients derived from the yaw. dynamometer test are consistently lower than those observed by Lesley and Reid. The angular

FIGURE 5.—Comparison of data from different tests of the same propeller in the same wind tunnel. Propeller set 16.6° at 0.75R; 0° yaw.

velocity in the latter test, however, was about 3,000 r. p. m. and Babberger found that, with this propeller, the thrust and power coefficients increased slightly with angular velocity. Substantial agreement with Babberger's test at 2,000 r. p. m. is regarded as evidence of the accuracy of the yaw dynamometer.

Propeller, vertical-force, and cross-wind-force coefficients are given graphically as functions of V/nD in figures 6 to 21. In figures 22 to 25 efficiency η and V/nD are given as functions of the speed-power ceofficient C_* . The maximum efficiency and V/nD at zero thrust are plotted in figure 26 against the secant of the angle of yaw Ψ . Figure 27 shows the ratio of cross-wind force to thrust for different values of V/nD. In figure 28 this ratio is plotted against the ratio of V/nD to V/nD at zero thrust. Pitching-moment coefficients are given as functions of V/nD in figure 29; yawing-moment, rolling-moment, and torque coefficients are plotted in figures 30, 31, and 32, respectively.

The power coefficient (figs. 6 to 21) is little affected by yaw at low velocities of advance, i. e., at small values of V/nD. At larger values of V/nD the power coefficient increases with each increment of yaw.

The thrust coefficient is decreased by yawing the propeller at low V/nD. This result is to be expected

since at $\frac{V}{nD}$ =0 the axial thrust would be independent

of yaw, and the thrust in the wind direction would be the axial thrust multiplied by the cosine of the angle of yaw. At the larger values of V/nD the thrust coefficient is increased by yaw and the value of V/nD for zero thrust is also increased.

Over the normal working range of a propeller there is thus a decrease in efficiency with yaw, although at the larger values of V/nD, greater than those for maximum efficiency, the efficiency is increased by yaw.

The manner in which efficiency varies with yaw in the normal working range is seen to advantage in figures 22 to 25 in which efficiency is plotted against the speed-power coefficient C_s .

In figure 26 the maximum efficiency for each bladeangle setting is plotted against sec ψ . The resulting parallel straight lines may be expressed by the equation

$$\eta_{max} = \eta_{max_0} - 0.6 \text{ (sec } \psi - 1)$$

where η_{max} is the maximum efficiency at zero yaw.

In figure 26 the V/nD for zero thrust is also plotted against sec ψ . As with η_{max} it is seen that V/nD for zero thrust varies, over the range investigated, directly with sec ψ .

The vertical force coefficient of a propeller in yaw is negligible (it does, however, show an increase with yaw). Although in the graphical representation of figures 6 to 21 this coefficient, as well as the cross-wind force coefficient for zero yaw, appears to have considerable magnitude, it should be noted that the scale to which it is plotted is ten times that used for the thrust coefficient.

The vertical force coefficient, while generally positive, appears in some instances to be negative at low V/nD and to change in sign as higher values of V/nD are reached. It is obvious that, assuming symmetrical flow, the direction of the vertical force would depend on the relation between the direction of propeller rotation and direction of yaw. In these tests the propeller rotation was clockwise when looking upwind and the yaw was positive. Had either been reversed it seems evident that, with symmetrical flow, the sign of the vertical force coefficient would have likewise been changed.

As would be expected, the cross-wind force coefficient shows a marked increase with yaw. The ratio of cross-wind force to thrust is shown for the 28.6° propeller as a function of V/nD in figure 27.

The curves are drawn from points $\frac{F_{v}}{T}$ = $\tan \psi$ at $\frac{V}{nD}$ = 0.

It is seen that at all values of V/nD greater than zero, F_y/T is greater than $\tan \psi$ or that the resultant hori-

zontal force is, except for $\frac{V}{nD}$ =0, inclined to the wind

direction at an angle greater than the angle of yaw.

The ratio of cross-wind force to thrust as a function of $\frac{V}{nD}/(\frac{V}{nD})_0$, where $(V/nD)_0$ is V/nD for zero thrust, is shown for all propellers in figure 28. It is seen that F_v/T increases with propeller pitch setting as well as

with yaw. It may be seen from these results that a propeller with its axis in pitch would develop thrust if operating at V/nD of zero thrust for axis parallel to direction of motion. The thrust under this condition may be of such magnitude that it should be considered in deriving airplane polars from glide tests with propeller running. For example, in glide tests of a VE-7 airplane (see reference 7), the drag coefficient at 15.1° angle of attack was found to be 0.143. From the present tests of propellers in yaw it appears that the thrust exerted by the propeller in the glide test may have been double the amount credited to it and the drag coefficient thus have

Further, in the derivation of the drag of the VE-7 airplane in the power flight tests of reference 7, a quantity $T \sin B$ was credited to the propeller as a liftwise force; B is the inclination of the propeller shaft to the wind direction. The present tests show that the credited amount should have been greater.

been 0.148.

It may also be seen that the difference between power and thrust coefficients of propellers in the flight and wind-tunnel model tests of reference 7 is qualitatively accounted for by the fact that in flight the propeller axis was at an angle of pitch, while in the wind-tunnel model it was parallel to the wind stream.

The lift developed by a propeller with its axis in pitch is sufficient to account, in considerable degree, for the high lift coefficients apparently developed by an airplane at large angle of attack, power on. Millikan, Russell, and McCoy show (reference 8) an increase in lift coefficient of about 0.2 with power on at 20° angle of attack. Interpolating from these tests in yaw and allowing for the three-blade propeller used by Millikan, Russell, and McCoy, it appears that the liftwise force exerted by the propeller was sufficient to account for more than half of the increase in lift coefficient found.

Pitching-moment coefficients for the propellers in yaw are shown in figure 29 as functions of V/nD. Under the conditions of these tests, the sign of the coefficient depends upon V/nD. It is generally positive at large V/nD and negative at small V/nD. Like the sign of the vertical force coefficient, it is obvious

that, assuming symmetrical flow, the sign of the pitching-moment coefficient would also depend upon the relation between the direction of rotation and direction of yaw; a reversal of either would result in reversing the sign of the pitching moment. Since the vertical force is small compared with thrust, a positive pitching moment shows a location of the line of action of thrust below the Y axis and a negative pitching moment a location above the Y axis.

Some verification of the observed change in sign of pitching moment with V/nD may be derived through analysis by simple blade-element theory. For example, it can be shown that for the 24.6° propeller in a vertical position and at 30° yaw, the pitching moments of the 0.75 radius elements are proportional 31 and -14 at V/nD 1.2 and 0.3, respectively. The ratio of these calculated moments is -5.8. The test of this propeller at 30° yaw shows a pitching-moment coefficient of 0.0066 at V/nD=1.2 and -0.0018 at V/nD=0.3. The ratio of pitching moments in the two cases is thus, for the whole propeller, -3.7.

It is possible that a part of the indicated pitching moment is due to a slight wind-stream asymmetry. Wind-stream surveys, however, revealed not more than 1% percent variation of velocity from the mean at the propeller disk, which appears insufficient to account for any considerable proportion of the pitching moment found. It will be noticed that there are insufficient observations to determine definitely the form of the pitching-moment curve in the low V/nD range. As this portion of the curve is of little practical importance, rather arbitrary functions have been drawn that become zero, as they should, at zero V/nD. It seems unlikely that, in the operating range, the magnitude of the pitching moment will be sufficient to affect greatly the stability characteristics of an airplane.

The yawing-moment coefficients, shown for the 16.8° and 28.6° propellers in figure 30, increase slightly with yaw. Even for the 30° yaw tests, however, the magnitude of the yawing moment about the axis chosen is extremely small.

Figures 31 and 32, showing the torque and rolling-moment coefficients for the 28.6° propeller, are of interest because it may be seen that the rolling moment increases more rapidly with yaw than the propeller torque. Although this result is illustrated for only one propeller, computations for the others show similar relations.

Figure 6.—Characteristics of a propeller set 16.6° at 0.75R: 0° yaw.

Figure 8.—Characteristics of a propeller set 16.6° at 0.75R; 20° yaw.

FIGURE 7.—Characteristics of a propeller set 10.6° at 0.75R; 10° yaw.

Figure 9.—Characteristics of a propeller set 16.6° at 0.75R; 30° yaw.

Figure 10.—Characteristics of a propeller set 20.6° at 0.75R; 0° yaw.

Figure 12.—Characteristics of a propeller set 20.6° at 0.75R; 20° yaw.

FIGURE 11.—Characteristics of a propeller set 20.6° at 0.75R; 10° yaw.

FIGURE 13.—Oharacteristics of a propeller set 20.6° at 0.75R; 30° yaw.

Figure 14.—Oharacteristics of a propeller set 24.6° at 0.75R; 0° yaw.

FIGURE 16.—Characteristics of a propeller set 24.6° at 0.75R; 20° yaw.

Figure 15.—Characteristics of a propeller set 24.6° at 0.75R; 10° yaw.

Figure 17.—Characteristics of a propeller set 24.6° at 0.75R; 30° yaw.

FIGURE 18.—Characteristics of a propeller set 28.6° at 0.75R; 0° yaw.

FIGURE 20.—Characteristics of a propeller set 28.6° at 0.75R; 20° yaw.

FIGURE 19.—Characteristics of a propeller set 28.6° at 0.75R; 10° yaw.

FIGURE 21.—Characteristics of a propeller set 28.6° at 0.75R; 30 °yaw.

FIGURE 22.—Variation of efficiency and V/nD with speed-power coefficient for a propeller set 16.6° at 0.75R and yawed different amounts.

Figure 23.—Variation of efficiency and V/nD with speed-power coefficient for propeller set 20.6° at 0.75R and yawed different amounts.

Figure 24.—Variation of efficiency and V/nD with speed-power coefficient for a propeller set 24.6° at 0.75R and yawed different amounts.

FIGURE 25.—Variation of efficiency and V/nD with speed-power coefficient for a propeller set 28.6° at 0.75R and yawed different amounts.

FIGURE 27.—Variation of the ratio of the cross-wind force to the thrust with V/nD for a propeller set 28.6° at 0.76R.

FIGURE 26.—Variation of V/nD at zero thrust and maximum efficiency with sec. ψ for propellers of four different pitch settings at 0.75R.

Figure 28.—Variation of the ratio of the cross-wind force to thrust with the ratio of V/nD to $(V/nD)_0$ for four pitch settings and three angles of yaw.

٥

FIGURE 29.-Variation of pitching-moment coefficient with V/nD for four pitch settings and four angles of yaw.

Figure 30.—Variation of yawing-moment coefficient with \$V/nD\$ for two pitch setings and four angles of yaw.

Figure 31.—Variation of rolling-moment coefficient with \$V/nD\$ for a propeller set 28.6° at 0.75R for four angles of yaw.

Figure 32.—Variation of torque coefficient with V/nD for a propeller set 28.6° at 0.75R for four angles of yaw.

CONCLUSIONS

The results of these experiments showed that:

- 1. Over the normal working range of the propeller, there was a decrease in thrust, an increase in power absorbed, and a decrease in efficiency with yaw. Up to 10° of yaw, the loss in maximum efficiency was not more than 2 percent, but at 30° yaw it became about 10 percent.
- 2. The cross-wind force was greater than the crosswind component of the axial thrust. This result indicates that the corresponding lift due to a propeller with its axis in pitch accounts for a larger proportion of the increase of lift coefficients apparent in airplanes at high angles of attack, power on, than would be estimated from the vertical component of the axial thrust.
- 3. With the yawed propeller, there was an appreciable thrust at V/nD for zero thrust at zero yaw. Consequently, airplane glide tests made with the propeller idling at a V/nD for zero thrust at zero yaw should be corrected for the thrust due to the yawed propeller.
- 4. Yawing the propeller induced a pitching moment that increased in magnitude with yaw.

DANIEL GUGGENHEIM AERONAUTICAL LABORATORY. STANFORD UNIVERSITY, CALIFORNIA, October, 1936.

REFERENCES

- 1. Clark, T. W. K.: Effect of Side Wind on a Propeller. R. & M. No. 80, British A. C. A., 1913.
- 2. Bramwell, F. H., Fage, A., Relf, E. F., and Bryant, L. W.: Experiments on Model Propellers at the National Physical Laboratory. R. & M. No. 123, British A. C. A., 1914.
- 3. Harris, R. G.: Forces on a Propeller Due to Sideslip. R. & M. No. 427, British A. C. A., 1918.
- 4. Flachsbart, O., and Kröber, G.: Experimental Investigation of Aircraft Propellers Exposed to Oblique Air Currents. T. M. No. 562, N. A. C. A., 1930.
- 5. Freeman, Hugh B.: The effect of Small Angles of Yaw and Pitch on the Characteristics of Airplane Propellers. T. R. No. 389, N. A. C. A., 1931.
- 6. Lesley, E. P., and Reid, Elliott G.: Tests of Five Metal Model Propellers with Various Pitch Distributions in a Free Wind Stream and in Combination with a Model VE-7 Fuselage. T. R. No. 326, N. A. C. A., 1929.
- 7. Durand, W. F., and Lesley, E. P.: Comparison of Tests on Air Propellers in Flight with Wind Tunnel Model Tests on Similar Forms. T. R. No. 220, N. A. C. A., 1926.
- 8. Millikan, C. B., Russell, J. S., and McCoy, H. M.: Wind Tunnel Tests on a High Wing Monoplane with Running Propeller. Parts 1 and 2, Jour. Aero. Sciences. vol. 3, no. 3, Jan. 1936, pp. 73-85.

TABLE I

COMPUTED VALUES OF COEFFICIENTS FOR DIF-FERENT PITCH SETTINGS AND VARIOUS ANGLES OF YAW

OF ?	YAW							
$\frac{V}{nD}$	C _P	C_T	7	Cr	C	· _	<i>C</i> ₌	C _R
16.6° PITCH SETTING, 0° YAW								
0. 124 . 254 . 335 . 419 . 484 . 546 . 592 . 648 . 703 . 743 . 788 . 822	0. 0402 . 0389 . 0387 . 0369 . 0361 . 0310 . 0283 . 0244 . 0200 . 0153 . 0090	0. 0873 . 0804 . 0731 . 0650 . 0573 . 0489 . 0437 . 0349 . 0274 . 0196 . 0110 . 0036	0. 269 . 525 . 633 . 768 . 807 . 834 . 800 . 790 . 728 . 565 . 329	000 000 000 0 0	018 012 006 008 006	00030 00061 00049 00043 00079 00079 00061 00030 00061 00024 00030 00006	0. 00047 . 00067 . 00077 . 00005 00055 00077 00016 00037 . 00004 . 00020 . 00069	
	1	6. 6°	PITC	H SET	TING,	10°	YAW	
0.081 203 297 381 441 501 551 602 656 700 736 773 840	0. 0382 . 0385 . 0387 . 0376 . 0371 . 0349 . 0330 . 0319 . 02276 . 02247 . 0217 . 0169 . 0098	0. 0884 . 0823 . 0760 . 0679 . 0619 . 0549 . 0487 . 0434 . 0342 . 0276 . 0216 . 0149 . 0014	0. 187 - 437 - 583 - 688 - 736 - 788 - 813 - 819 - 813 - 782 - 733 - 682 - 120	. 01 . 01 . 01 . 01 . 00 . 00 . 00	150	00024 00024 00030 00018 00006 00018 00024 00048 00036 00009 00006 00042	-0.00023 00004 .00028 .00012 .00017 .00036 00040 .00030 .00032 .00111 .00148	00020 00008 .00006 .00008 00010 .00008 .00032 .00040 .00050
16. 6° PITCH SETTING, 20° YAW								
0. 075 . 224 . 233 . 331 . 460 . 506 . 558 . 613 . 674 . 716 . 744 . 780 . 820 . 854 . 883	0.0411 0.0398 0.0395 0.0395 0.0389 0.0376 0.0357 0.0357 0.0304 0.0279 0.0252 0.0252 0.0178 0.0147 0.0115	0.0841 .0784 .0788 .0682 .0599 .0491 .0428 .0349 .0247 .0247 .0190 .0122 .0067 .0017	0. 154 . 441 . 543 . 661 . 708 . 739 . 768 . 774 . 747 . 739 . 650 . 562 . 390	.02 .62 .02	00	0012 00012 00012 00025 00013 00018 00037 00073 00079 00067 0116 00207	-0.0020000037 .00021 .00057 .00021 .00059 .00071 .00098 .00128 .00151 .00220 .00194 .00290 .00307 .00307	0. 00023 .00012 .00026 .00047 .00053 .00057 .00059 .00089 .00089 .00106 .00108 .00124 .00136
	1	6. 6°	PITC	H SET	TING,	30°	YAW	
. 255 . 350 . 419 . 484 . 536 . 603 . 654 . 703 . 751 . 792 . 834	.0403 .0396 .0393 .0391 .0376 .0367 .0345 .0318 .0291 .0254 .0227	0.0760 0.0704 0.0651 0.0593 0.0545 0.0434 0.0381 0.0325 0.0272 0.0217 0.0160 0.0034	0. 183 . 446 . 576 . 632 . 675 . 707 . 713 . 722 . 718 . 702 . 657 . 588 . 439 . 211	l .04	34	0080 0099 0093 0037 0012 0025 0043 0056 0058 0012 0143 0173 0242 0247 02	-0. 00190 00113 00029 00031 00012 . 00072 . 00109 . 00148 . 00208 . 00306 . 00370 . 00370	-0.00021 .00035 .00056 .00070 .00088 .00111 .00111 .00136 .00159 .00155 .00175
20.6° PITCH SETTING, 0° YAW								
$\frac{V}{nD}$	CP	_ _ '	Cr	7	C _P	_ _	Cr.	C _m
0. 124 . 270 . 359 . 441 . 509 . 563 . 739 . 785 . 836 . 837 . 920 . 943 . 1. 001 1. 015	70		-0.000000000000000000000000000000000000000	24 24 18 12 12 12 12 18 18 18 112 106	-0.00073 .00440 0091 00116 00055 00067 00061 00043 00049 00018 00030 00042 00040 00040 00040 00040 00040 00040 00040 00040 00040	0.00077 .00026 .00018 00034 .00022 .00033 00002 .00014 00024 00024 00024 00024 00033		

يتنيقان بيا يونديه لليستييطشيقميكية تسينعقف للترتم بالأراث المدانات الرارات الأراب

TABLE I—Continued						TABLE I—Continued												
$\frac{V}{nD}$	C_P	Cr	7	Cry	Cr.	C.	$\frac{V}{nD}$		C_P	$C_{\mathbf{I}}$	7		C_{F} ,	Cra		C _m		
20.6° PITCH SETTING, 10° YAW					24.6° PITCH SETTING, 20° YAW													
0. 081 . 220 . 294 . 386 . 440 . 507 . 553 . 596 . 662 . 777 . 842 . 996 . 938 . 990 . 1. 028	0. 0632 . 0568 . 0526 . 0528 . 0528 . 0507 . 0504 . 0460 . 0446 . 0344 . 0270 . 0216 . 0160 . 0160	0.0883 .0885 .0801 .0855 .0818 .0747 .0694 .046 .0568 .0516 .0426 .0320 .0320 .0226 .0162 .0002	0. 113 .353 .504 .625 .632 .747 .762 .787 .819 .844 .808 .758 .620 .019	0.0155 .0164 .0170 .0164 .0160 .0150 .0143 .0128 .0122 .0112 .0101 .0091 .0085 .0088	-0.0005000600060006000840012000120000550004300024000080002400008 .00064 .00069	-0. 00174 00120 00172 00072 00034 00092 00056 00022 00024 00030 00002 00003 00003 00003 000128		286 181 166 166 162 147 171 171 171	0. 0740 . 0741 . 0734 . 0682 . 0682 . 0670 . 0658 . 0632 . 0632 . 0632 . 0585 . 0553 . 0553 . 0503 . 0414 . 0319 . 0319 . 0319 . 0264		950 (950 (950 (950 (950 (950 (950 (950 (0. 121 . 342 . 444 . 464 . 609 . 684 . 788 . 762 . 786 . 787 . 804 . 788 . 787 . 804 . 788 . 782 . 699 . 648 . 652 . 609	0. 0354 . 0358 . 0358 . 0377 . 0365 . 0339 . 0339 . 0306 . 0306	-0.000000000000000000000000001001001001001001002	74 43 006 31 006 31 68 93	-0.0032000222000370005200018 .00053 .00004 .00112 .00157 .00230 .00232 .00328 .00328 .00385 .00487 .00487		
20.6° PITCH SETTING, 20° YAW 0.088 0.0617 0.0854 0.122 0.0817 0.00049 -0.00206				24.6° PITCH SETTING, 30° YAW														
0.088 .241 .342 .435 .507 .623 .682 .738 .841 .895 .967 .905	0.0617 .0529 .0519 .0518 .0522 .0492 .0471 .0444 .0416 .0386 .0337 .0299 .0298 .0198 .0131	0.0854 .0857 .0849 .0739 .0735 .0610 .0643 .0485 .0427 .0358 .0229 .0234 .0161 .0101	0, 122 .390 .560 .714 .772 .806 .806 .806 .780 .780 .724 .628 .510	0. 0317 .0337 .0339 .0325 .0312 .0279 .0262 .0248 .0235 .0226 .0310 .01197 .0182 .0169 .0147	0. 00049 .00109 .00054 .00037 .00092 .00086 .00128 .00147 .00159 .00169 .00184 .00197 .00249	0 00008 00018 00071 00073 00092 00141 00153 00255 00255 00257 00360 00465 00469	0.1 .3 .4 .8 .8 .8 .8 .8 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	17 43 558 67 74 57 28 83 37 81 628	0. 0742 . 0724 . 0713 . 0678 . 0672 . 0669 . 0638 . 0614 . 0604 . 0561 . 0534 . 0501 . 0462	0. 0. 0. 0. 0. 0.	776 703 637 576 522 474 427 326 326	0. 137 . 383 . 509 . 649 . 705 . 721 . 748 . 751 . 735 . 747 . 724 . 696 . 671	0. 0516 . 0527 . 0542 . 0546 . 0529 . 0510 . 0491 . 0478 . 0406 . 0454 . 0441 . 0429	-0.000 .000 .000 .000 .000 .000 .000 .0	119 999 30 225 112 150 993 999 93 93 112 155 50	-0.00507 -0.00206 -0.00087 -0.0010 -0.0010 -0.00130 -0.00213 -0.00182 -0.0182 -0.0534 -0.0501 -0.0050		
				ring, 30°			1.1 1.2 1.2	89 29 69	.0534 .0501 .0462 .0438 .0408 .0362 .0331	.0	235 194 147 105	.618 .565 .499 .402 .255	. 0407 . 0397 . 0394 . 0372	.002 .003 .002	73 28 72	.00501 .00050 .00722 .00750		
0.107 .267 .358 .454	0.0642 .0562 .0539 .0533	0.0772 .0788 .0772 .0718	0. 129 . 374 . 513 . 612	0.0460 .0493 .0495 .0478	-0.00143 00081 .00018 00018	-0.00376 00085 00072 .00003		15	.0289		ITCH	!_	.0360 NG, 0°	YAW	40	.00826		
. 297 . 358 . 464 . 540 . 618 . 688 . 765 . 831 . 892 . 944 . 928 1. 044 1. 096 1. 147	0.0642 .0562 .0539 .0533 .0525 .0516 .0502 .0434 .0378 .0352 .0297 .0270 .0231	0, 0772 , 0788 , 0772 , 0718 , 0654 , 0659 , 0638 , 0480 , 0385 , 0314 , 0223 , 0183 , 0127 , 0070 , 0006	0. 129 . 374 . 513 . 612 . 673 . 709 . 735 . 750 . 738 . 741 . 615 . 615 . 431 . 332 . 038	.0454 .0432 .0417 .0334 .0359 .0335 .0316 .0263 .0275 .0267	.00081 .00087 .00060 .00112 .00174 .00169 .00237 .00299 .00314 .00329 .00385	.00067 .00060 .00112 .00174 .00169 .00237 .00299 .00314 .00329 .00385	.00067 .0050 .00112 .00174 .00169 .00237 .00299 .00314 .00329 .00385	00085 00072 00073 0003 00068 00144 00188 00251 00338 00379 00505 00504 00594 00632	0. 229 . 369 . 560 . 643	Cr 0.1002 .0944 .0908 .0894 .0883	0.1006 .0965 .0952 .0975 .0976 .0334 .0769 .0716 .0612 .0582 .0519 .0455	0. 230 . 377 . 587 . 702 . 750	-0.00032 00025 00025 00025 00025 00032 00032 00032 00006	-0.00044 00044 00051 00089	0.00090 .00055 .00055 .00055	-0.00016 00018 00054 00054 00052 00043 00039 00039 00039		-0, 0160 -, 0160 -, 0145 -, 0142 -, 0141
				TING, 0°	YAW		. 643 . 728 . 806 . 864 . 913 . 970 1. 024 1. 067	. 0857 . 0821 . 0792	.0834 .0769 .0716	.784 .809 .825	00032 00032 00025	00057 00089 00044	00034 00013 . 00030 . 00065	00043 00046 00039		0130 0131 0120 0117		
0. 143 . 216 . 444 . 552 . 666 . 743 . 811 . 867	0. 0757 . 0780 . 0730 . 0704 . 0885 . 0848 . 0818 . 0372 . 0530	0.0996 .0909 .0945 .0901 .0784 .0693 .0615 .0548	0. 188 -287 -575 -706 -762 -794 -807 -830 -835	-0.00031 00025 00024 00018 00025 00024 00031 00012 00012	-0.00063 00044 00091 00098 00086 00116 00088 00068 00069 00049	0. 00032 . 00056 . 00004 00012 00014 00018 00034 00012	1. 024 1. 067 1. 124 1. 169 1. 263 1. 305 1. 307 1. 345	. 0908 . 0894 . 0883 . 0857 . 0821 . 0736 . 0708 . 0658 . 0612 . 0431 . 0343 . 0343 . 0276	.0582 .0519 .0455 .0390 .0254 .0179 .0184	.744 .681 .702	00000 00008 00008 00008 0 00012 00006	00038 00032 00032 00057	00019 00011 00061 00042	00034 00027 00028 00014 00026 00012 00029 00009		0113 0105 0097 0088 0009 0055 0028		
1, 012 1, 050 1, 092	. 0190 . 0424 . 0386 . 0328	. 0422 . 0357 . 0292 . 0226	.830 .852 .795 .752	. 00018 . 00006 . 00012	00043 00061 00055	00038 00048 00090 00070			28.	6° Pl	TCH	SETTI	NG, 10°	YAW				
1. 050 1. 092 1. 131 1. 161 1. 202	. 0267 . 0200 . 0118	.0153 .0084 .0006	.648 .488 .061	. 00018 . 00024 . 00018	00074 00012 00085	00070 00015 00034	$\frac{V}{nD}$	C_P	C_{T}	7	C_{F_g}	C _F ,	C.	C _n	Cι	Co		
0. 099 .312 .449 .551 .664 .744 .815 .887 .970 1. 014 1. 046 1. 093 1. 127 1. 162 1. 202	24. 0.0762 0.0763 0.0583 0.0583 0.0583 0.0584 0.0530 0.070 0.0429 0.0388 0.	6° PITC: 0.082 0.082 0.083 0.0946 0.083 0.0764 0.0833 0.0997 0.034 0.0174 0.0101 0.0339 0.0285 0.0214 0.014 0.073 0.0006	U. 128 . 304 . 622 . 706 . 708 . 807 . 821 . 834 . 801 . 772 . 693 . 412 . 047	O. 0175 0. 0175 0. 0175 0189 0189 0189 0189 0185 0189 0185 0189 0134 0124 0124 0129 0114 0109 0100	PAW -0.00043000180000600020 0 0.00037 .00068 .00074 .00123 .00129 .00129 .00128 .00128 .00128	-0.000670003300040000450008200096001040008600176001760021100208002080031100383	0. 218 .317 .409 .541 .639 .727 .806 .806 .920 .1 027 1. 080 1. 122 1. 174 1. 220 1. 283 1. 306	0. 0988 . 0901 . 08901 . 0886 . 0892 . 0877 . 0854 . 0796 . 0776 . 0670 . 0623 . 0532 . 0479 . 0404	. 0960 . 0901 . 0830 . 0768 . 0706 . 0638 . 0518 . 0463 . 0395 . 0395	.345 .420 .565 .688 .747 .747 .805 .819 .814 .833 .834 .757 .757	(0. 0187 .0193 .0191 .0207 .0204 .0196 .0191 .0187 .0182 .0179 .0173 .0173 .0173 .0173 .0173 .0173	, 00025, 00063, 00095, 00025, 00045 -, 00095 -, 00108 -, 00108 -, 00095 -, 00108 -, 00095 -, 00158	00111 00082 0 00072 00008 . 00145 . 00047 . 00131 . 00135 . 00140	-0.00055 -0.0071 -0.0005 -0.0078 -0.0018 -0.0004 -0.0019 -0.0009 -0.0019 -0.00	-0. 0157 0144 0143 0143 0143 0139 0130 0124 0118 0103 0103 0103 0103 0097 0097 0082 0070	0143 0141 0140 0130 0131 0127 0121 0107 0009 0003 0085 0070		

TABLE I—Continued	TABLE I—Continued
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
28.6° PITCH SETTING, 20° YAW	28.6° PITCH SETTING, 30° YAW
0. 110 0. 1049 0. 0957 0. 100 0. 0363 -0. 00082 -0. 00464 -0. 00083 -0. 0161 -0. 0167 .380 .0957 .0924 .367 .0385 00063 00221 00067 0154 0152 .511 .6594 .6889 .508 .0385 00075 .00046 00888 0142 .632 .0992 .6831 .617 .0408 00019 .0034 00068 0142 0142 .721 .8799 .0856 .702 .9113 .00025 .00100 00068 0152 0144 .804 .8870 .0803 .742 .9407 0 .00134 .00040 0152 0138 .825 .0855 .0750 .759 .0400 .00076 .00179 .00722 .0151 0138 .977 .0805 .0944 .752 .0383 .00129 .00226 .00086 0147 0128	$\begin{array}{cccccccccccccccccccccccccccccccccccc$